Advances in Lithium Ion Technology and Applications Yet-Ming Chiang Department of Materials Science and Engineering Massachusetts Institute of Technology National Transportation Safety Board Li-Ion Battery Forum, April 11, 2013

Li-Ion Since Commercial Inception

BAE SYSTEMS DAIMLER

Example of 2nd Generation Success

First On-Road Li-Ion Powered Commercial Production Vehicle (2008)

- 200 kW roof-mounted pack
- 3000 lb weight savings over Pb-acid
- ~3000 buses in service
- 16h per day, 365 days/yr
- > 400 million cumulative road miles driven to date

2009: First Li-Ion Hybrid System used in Formula 1 Racing

Race
Conditions:
80% of cell
energy
delivered
over 6-8 sec

(250C rate)

2009: World's First Large Scale Li-Ion Storage System in Commercial Service: 12 MW, Los Andes, Chile

2011: Laurel Mountain, West Virginia: 32 MW, 8 MWh of Lithium-Ion Storage Assists Wind Integration

GREEN TECH | 10/27/2011 @ 12:00PM | 5,904 views

The World's Largest Lithium-Ion Battery Farm Comes Online

+ Comment now

For nearly a month now, a cluster of 53-foot containers on a ridge of Laurel Mountain in West Virginia has been sipping power from wind turbines that stretch out in both directions. The containers are home to the world's largest lithium-ion battery farm for storing and sending energy to the electric grid, and the project reflects the emergence of a technology to help manage the growing production of renewable energy in the country.

Li-Ion EV Battery Pack Design

Cylindrical or Prismatic Cells

Modules

Range and Cost: Barriers to Adoption of Li-Ion in EV

- Energy required: 250-300 Wh/mile
- Today's cost: \$500-600/kWh
- Pack specific energy: 80-100 Wh/kg
- Pack energy density: 200 Wh/L

As a result, Li-Ion Adoption in Transportation Has Not Met Expectations

- Projected adoption rates decreased year by year and in the end still was too optimistic
- Many companies built up manufacturing capacity based on such projections
- Currently ~10 GWh/year Liion production capacity
 worldwide is idle (enough capacity for 400,000+ Leafs per year)

Pacific Northwest Today

WECC Dispatch – No new renewables

Source: NREL Analysis

Pacific Northwest with 30% Wind Penetration

Source: NREL Analysis

Cost is a critical barrier for grid applications

The energy density of electrochemical storage is needed benefit for grid applications

...into this?

...or this?

...or this?

...or this?